

OSVR Software Framework

Ryan A. Pavlik, PhD (Sensics, Inc.)
CONVRGE OSVR Tech Talk – 19 April 2015

I'm going to present some insight into the core of the OSVR software
framework, from my perspective as a senior software engineer for
Sensics on the project.

A View of the System

In my mind, when I think of the OSVR Core, it has basically two sides
– two basic public APIs – and it serves as a universal interface
between them.

Now, if you're developing experiences using one of the game engine
integrations available (the far right side of the diagram, we'll zoom
in shortly), some of this presentation is probably lower-level than
you need to know, and by design, you won't have to think about it.
Nevertheless, I think there's value in getting a better idea of how
OSVR facilitates interoperability between application software and
devices.

Close-Up of Plugin Side

So this is what I call the “left side of the stack” - the plugin, server, or
device side. Specifically, this is the “PluginKit” API: the API that
allows you to write software that interacts directly with hardware to
expose generic interfaces (device plugins) or software modules
that expose generic interfaces based on input from other interfaces
(analysis plugins).

For cross-compiler compatibility, ABI stability, and easier foreign
function interfaces (language bindings), the basic API is actually
expressed as a C API. There's a header-only C++ wrapper included
for safer, more concise and expressive use of the API: it gives you
many of the advantages of a C++ API without having to use the
same version of Visual Studio (or even the same compiler family) as
the core.

Close-up of App Side

Now, on the “right side of the stack,” we get the client, game, or
application API, formally known as ClientKit. This is how a VR
experience interacts with the functionality provided by plugins (the
left side) – getting input data, setting up rendering, etc.

As with PluginKit, ClientKit is a C API (for the same reasons, with FFI
made more important because of game engine bindings) with a
similar C++ header-only API wrapper.

However, there can be a few more layers here, because while you can
write an application directly using ClientKit (C or C++), you don't
have to. If you're using a game engine, an integration can be
written for that engine, then you can create your content in the
environment you're familiar with. For instance, there is an
integration with Unreal Engine, that takes the OSVR information
and concepts and maps them into that engine's design. Our Unity
plugin is actually two layers away: there's a generic .NET/Mono
binding to OSVR called Managed-OSVR (the reusable stuff that
doesn't depend on Unity), that gets used by the Unity plugin
making those experiences drag-and-drop simple to create.

An app asks for resources by “semantic
name”

/me/hands/left

/me/hands/right

/me/head Rendering

World Interaction

So starting over on the right side, let's consider a hypothetical VR
application that uses head tracking for rendering and your left and
right hands to do some interaction in the game world. In OSVR, the
way an application does this is by requesting those resources with
a “semantic name” - “/me/head”, “/me/hands/left”, etc. Here,
“semantic” indicates a name with application-linked meaning.

Actually, a “semantic path” (like a good URL)

/left

/right

Rendering

World Interaction/me

/head

/hands

And, if those names looked like pathnames, or directory names,
you're exactly right: these semantic names actually form part of
what we call the “Path Tree” in OSVR. Just like a filesystem path, or
closer still a good URL or web app API, resources are identified by
paths with meaning.

So what?
● This is a higher-level API: the game asks for what it wants

by its meaning, not by its data source
– Left hand position, not tracker data from Hydra sensor 0

● So we can make sure the game gets the data with the
suitable meaning, with a variety of hardware

● To find the actual data source, we must look at another
part of the path tree...

What is the point of having the path tree? Why not just say “sensor 0,
sensor 1,” etc.?

The simplest reason is hardware independence: The world doesn't get
all its VR-related hardware and software from one vendor; you
want to be able to get the particular solutions that best meet your
needs – the best HMD, the best input devices, the best trackers,
etc.

But further, think of what information the game is providing to OSVR.
When it asks for the position of /me/hands/left, we know it wants
your left hand position, instead of just saying “Hydra sensor 0”.
With this high-level information on meaning, OSVR can work
behind the scenes to make the desired data available to the
application, regardless of what is tracking your left hand (a Hydra, a
STEM, a Leap Motion, some vision-based tracker...)

This is all the application needs to know, and that keeps the
application compatible with lots of current devices, as well as
future ones.

So now, let's look inside of OSVR and see what it's doing to get that
data. For that, we have to go to the left side of the diagram.

Device driver in plugin

/com_osvr_Multiserver /OSVRHackerDevKit0 /tracker /0

Plugin Device Interface Sensor

Data from a device driver in a plugin (here, the HDK tracker in one of
the core bundled plugins) is made available at a path that generally
has four parts: first the plugin, then the device name, then the
interface class name, then the sensor ID.

This is a different part of the same path tree the semantic names were
in.

Add another input device

/com_osvr_Multiserver /OSVRHackerDevKit0 /tracker /0

Plugin Device Interface Sensor

/RazerHydra0

/tracker

/0

/1

/button

/0

/1

/2

...

/analog

/0

/1

/2

...

green: actual data sources
(some left out - the Hydra

has a lot of data!)

Just like the part of the tree we've already seen, we can have lots of
resources. Here, for instance, is an abbreviated version of the tree
for an HDK and a Razer Hydra. Notice that the Hydra exposes
button, analog (joystick and analog trigger), and tracker interfaces.
I've left off some of the sensor nodes: the Hydra has lots more than
3 analog and button sensors.

I've highlighted the “sensor” nodes in green – these are where the
data is effectively emitted.

So this is a nice tree, but these aren't particularly hardware-
independent semantic paths: in fact, they're hardware dependent,
and they're just numbered sensors, not very semantic.

/com_osvr_Multiserver
aliases!

/RazerHydra0

/tracker

/0

/1

/button

/0

/1

/2

...

/analog

/0

/1

/2

...

/semantic

/left

/right

However, the self-description metadata in an OSVR driver is
responsible for not only indicating the interface classes provided,
but also describing the various sensors and their relationships in a
semantic way. This builds a semantic tree of aliases at the device
level: hardware-specific semantic names.

You can see here that
/com_osvr_Multiserver/RazerHydra0/semantic/left is an alias for
…./tracker/0: effectively describing the tracker sensor 0 as being
“left”. Similarly, tracker sensor 1 is “right”.

/com_osvr_Multiserver

association!

/RazerHydra0

/tracker

/0

/1

/button

/0

/1

/2

...

/analog

/0

/1

/2

...

/semantic

/left

/right /trigger

/1

...

In this case, the left and right Hydra controllers each have a number
of buttons and analogs. You now see that how the path tree can
describe association: There is a button labeled with the number 1,
so …./semantic/left/1 is that button on the left controller, and
…./semantic/left/trigger is the analog trigger on the left controller.

Of course, many nodes are left out on this diagram for clarity. Those
left off include the equivalent aliases that exist under
…./semantic/right: /1 goes to button sensor 8 if I recall correctly,
etc.

/com_osvr_Multiserver /RazerHydra0

/tracker

/0

/1

/semantic

/left

/right /trigger

/1

/left/me /hands

We started out by talking about an application that wanted to use
your left hand to interact with the environment, and at last we're
seeing both parts of the tree in the same picture. Here,
/me/hands/left is an alias for
/com_osvr_Multiserver/RazerHydra0/semantic/left which is an alias
for /com_osvr_Multiserver/RazerHydra0/tracker/0. We've now
traced back from the semantic name to the underlying hardware,
behind the scenes.

It's nice to see the tree here, and see how that semantic name
resolves, but we're essentially mixing two data structures in this
picture: the tree structure of the names, with the graph structure of
the aliases. Let's look at just the aliases for a moment.

/com_osvr_Multiserver/RazerHydra0/tracker/0

/com_osvr_Multiserver/RazerHydra0/semantic/left

/me/hands/left

Original data

gets a friendlier name

and is designated as the source
of your left hand position/orientation.

World Interaction
Your game now uses your hand movements

to interact.

So we start at the source of the data: the hardware sensor and
interface, which then gets a semantic name within that device,
which is then assigned as the source of the general/generic
semantic name for your left hand. The app just asks for the left
hand.

Furthermore, this configuration can actually automatically configure
itself: the descriptor for the Hydra has a section that basically says,
“if there isn't already an alias for /me/hands/left, put one there that
points to the left Hydra controller” - but these aliases could of
course be manually configured for more complex VR systems.

Note that the arrows could go either direction: I don't mean to
indicate a pull or push data flow, just had to pick a consistent
direction for those alias arrows. Application software can choose to
receive callbacks or to query state, and both techniques work
independent of how the underlying hardware is accessed – the
library makes that transparent.

By the way, you can have arbitrarily many aliases between the name
the application uses and the hardware, with no performance
degradation: at runtime those steps are collapsed down, the data
isn't actually taking a “hop” for each alias.

/com_osvr_Multiserver

/RazerHydra0

/tracker

/0

/1

/semantic

/left

/right /trigger

/1

/OneEuroFilter0

/tracker

/0

"analysis" - filter/smooth data

/1

/semantic

/left

/right

Now let's consider another similar scenario. Back to the path tree, you
can see we've added a new node called “OneEuroFilter0”. It's
exposing two sensors on a tracker interface, which also have local
semantic names, but the data isn't coming directly from a piece of
hardware. This is an analysis plugin that contains a smoothing filter
for the (noisy) raw tracking data that comes from the Hydra. The
filled arrow shows that the One Euro filter is actually acting as a
client in a sense, taking in data from the Razer Hydra's trackers,
and generating smoothed tracker data from it.

/com_osvr_Multiserver

/RazerHydra0

/tracker

/0

/1

/semantic

/left

/right /trigger

/1

/left/me /hands

/OneEuroFilter0

/tracker

/0

/1

/semantic

/left

/right

Ah, that's better tracking!

So, if we want smoothed tracking for our left hand, we can now point
the alias /me/hands/left to the semantic/left under the
OneEuroFilter instead of directly from the Hydra. No changes to
the application are needed, despite the fact we just switched out
the source of the data from underneath it: as far as the application
is concerned, it knows where /me/hands/left is and that's as far as
it has to think about.

/com_osvr_Multiserver/RazerHydra0/tracker/0

/com_osvr_Multiserver/RazerHydra0/semantic/left

/me/hands/left

/com_osvr_Multiserver/OneEuroFilter0/tracker/0

/com_osvr_Multiserver/OneEuroFilter0/semantic/left

Original data

gets a friendlier name

then serves as input to a smoothing filter.
That filter produces smooth tracker data

which also gets a friendly name

before being finally designated as the source
of your left hand position/orientation.

World Interaction
Your game now uses your hand movements

to interact, without worrying about the previous
steps (or even knowing).

If we again take away the tree and just look at the aliases and data
usage, you can see the extra two nodes between the semantic
name and the hardware that provide us with improved tracking
data.

For the sake of completeness, I should point out that because the raw
unfiltered tracking data from the Hydra is noisy (which is typical of
most tracking technology), we actually set up this configuration,
with the filter already inserted, by default. If you wanted to, you
could manually add an alias from /me/hands/left directly to the
Hydra tracking – that would override the automatic aliases – or
point an application directly at the hardware-specific name to get
the raw data, but that's not recommended, especially the
“hardware-specific name in application” part.

And thus...
● You can in fact use anything with data resembling a

tracker to provide /me/hands/left, now or in the future,
even with a game from today.

● Generalizes to:
– many different devices (including VRPN support!)
– any conceivable analysis plugin(s)
– whatever semantic names come into common usage

With the basics of the path tree as we've discussed, you can see how
an application written today that wants /me/hands/left will work
today and into the future, no matter what the source of the data
that “resembles tracker data”. This is the power of the combination
of generic interfaces and semantic names with arbitrary levels of
aliases.

While I picked a convenient example that I happen to use a lot, this
works with many different devices. There are a growing number
with drivers written against the OSVR PluginKit API. The hundreds
of devices supported by the existing de-facto standard in
commercial and academic VR, VRPN, are also supported: you just
need to provide the descriptor that would have come with an
OSVR-native plugin. This also generalizes to any analysis plugin
you can think of: not limited to a single input to a single output, or
presenting the same output interface as it takes in.

And of course, there's more than just /me/hands/left – you can use
any arbitrary semantic name, and we encourage you to use very
meaningful names to increase the flexibility of what OSVR can do
to get you that data. We're working on a suggested set of common
semantic names, and you're welcome to help.

Or, for instance,

/com_osvr_Multiserver/OSVRHackerDevKit/tracker/0

/com_osvr_Multiserver/OSVRHackerDevKit/semantic/HMD

/me/head

Original data

gets a friendlier name

and is designated as the source
of your head orientation.

RenderingThus, you now have head tracking in your game.

As a final example and a bit of a tease, here's the diagram showing
how the rendering engine in your game gets head tracker data
from the OSVR HDK's integrated orientation tracker.

/com_osvr_OpenCVCamera /Camera0

/imaging /0

/semantic /ir

/head/me

/VisionTracker0

/tracker /0

/semantic /hmd

/com_osvr_LEDPositionalTracking

Notice - different interface class!

But now, let's say there's an IR camera in the mix, and some IR LEDs
on the HMD front panel. You can take the IR imaging data from the
camera and feed it into an “LEDPositionalTracking” analysis plugin,
which exposes a single sensor on a tracker interface.

Notice that here, unlike the One Euro filter, the input and output data
of the analysis are different interfaces: we've turned imaging into
tracking.

 You can then point /me/head at the output of the analysis plugin.

/com_osvr_OpenCVCamera/Camera0/imaging/0

/com_osvr_OpenCVCamera/Camera0/semantic/ir

/me/head

/com_osvr_LEDPositionalTracking/VisionTracker0/tracker/0

/com_osvr_LEDPositionalTracking/VisionTracker0/semantic/HMD

Camera data

gets a descriptive name

and is used as input to a software module that
performs optical tracking. This produces tracking data

which also gets a friendly name

before being finally designated as the source
of head tracking.

Rendering
Your game now has positional tracking as well as

orientation, if desired, for your head

When we look at just the route to the rendering engine, the camera
plugin gets data, and gives it a nice name. An algorithm in an
analysis plugin uses that imaging data to run a marker-based
vision tracking algorithm, and the results are exposed as a sensor
on a tracker interface.

The sensor gets a local friendly name, is set as the source of
/me/head, and now, the application gets positional tracking as well
if desired (if it asks for full pose data or registers a pose callback),
instead of just orientation as before. The application doesn't need
to know how the position was computed, or who wrote the
algorithm – so algorithms can compete and improve – or even that
a vision-based tracker was used: the data still has the same
semantic name.

For more information:

● OSVR developer portal
● osvr.github.io

● Sensics – Founding contributor to OSVR, experts working in VR/AR for
over a decade
● www.sensics.com

