Intro to ETW tracing and
OSVR

Ryan A. Pavlik, Ph.D.
Senior Software Engineer, Sensics, Inc.
August-September 2015

3eNSICS

What is Event Tracing for Windows?

aka ETW, xperf, Windows Performance Toolkit (WPT), Windows Performance Analyzer (WPA), ...

“Event Tracing for Windows (ETW) is an efficient kernel-level tracing
facility that lets you log kernel or application-defined events to a log file.
You can consume the events in real time or from a log file and use them
to debug an application or to determine where performance issues are

occurring in the application.

ETWV lets you enable or disable event tracing dynamically, allowing you to
perform detailed tracing in a production environment without requiring

computer or application restarts.”

Source: MSDN, “Windows Events: About Event Tracing”

What about the rest of those? xperf is the command-line tool to control ETW, so often used synonymously with ETW. Windows Performance Toolkit is the name given by MS to the installable package that provides user-level tools for ETW. WPT

includes Windows Performance Analyzer, the GUI we'll use to display and explore tracing data, as well as other tools like WPRUI (Win. Perf. Recorder Ul, a limited GUI for controlling tracing that we won't use).

https://msdn.microsoft.com/en-us/library/windows/desktop/aa363668(v=vs.85).aspx

Effectively, a collection of tools and technologies to get very in-depth performance

details across an entire running environment at minimal performance impact.

With UlforETW, an open-source tool that (among other things) automates the
complex command lines to start, stop, and manage traces, it can be a great
investigative tool (including high rate sampling and wait-analysis profiling) on its
own: I've used it like this for some time now.

OSVR on Windows now augments ETW traces made by UIforETW with custom
events on both the client and server side.

The following screenshots barely scratch the surface of what you can do with ETW,

especially now with OSVR emitting custom events.

A Ul for ETW

acing | Save Trace Buffers (Ctrl+Win+C) ' | Stop Tracing Settings...

Tracing is started.

Saving trace to disk...

The trace you have just captured "C:\Users\Ryan\AppData\Local\Temp\kernel.etl” may contain personally identifiable information,
including but not necessarily limited to paths to files accessed, paths to registry accessed and process names. Exact information
depends on the events that were logged. Please be aware of this when sharing out this trace with other people.

The trace you have just captured "C:\Users\Ryan\AppData\Local\Temp\user.etl” may contain personally identifiable information,
induding but not necessarily limited to paths to files accessed, paths to registry accessed and process names. Exact information
depends on the events that were logged. Please be aware of this when sharing out this trace with other people.

Merging trace...

Merged Etl: C:\Users\Ryan\Documents\etwtraces\2015-08-20_11-30-46_Ryan.etl

Finished recording trace.

Traces: Trace information:
~
2015-08-20 11-30-46 PalaceDemo v

About Close

o Compress Trace
¥| Context switch call stacks
¥| CPU sampling call stacks
Fast sampling
GPU tracding

Input tracing: | Private v

Circular buffer tracing

[]show commands

Settings | used for this trace: | chose to turn on fast sampling, but not GPU tracing,
and traced to an in-memory circular buffer that gets saved on a keystroke. This can
let you leave tracing running continuously, then after you notice unusual behavior or
something you'd like to investigate, you can hit the shortcut key and save a trace of

the last x seconds, for after-the-fact performance investigation.

Trace opened in WPA

e Double-clicked on trace name in UIforETW. Screenshot shows only the top pane shown
here: these are the “custom events” emitted by UIforETW and OSVR. Other panes show
lots more data.

e UlforETW "marks"” processor speed, temp, etc. at regular intervals (is thermal throttling
affecting your performance?) and also marks keyboard and mouse movements

(customizable - was a key press or mouse click a trigger for an unusual behavior?).

4 Generic Events Randomascii Chrome and Multi Events* v O £¥ BOEH=5x

Series

P osvr_server.exe (964356)]

b osvr_palace.exe (770440) W jE ¢ RN B

b UlforETW.exe (964624) L 000000000000 ¢ ¢ 0000000000 000000 0000000000000 XX} 3

e I [[I [A [N A I R A
34 35 36 37 38 39 40 41 42 43 a4 45 46 47 48 49 50 51 52 53 54

Line# Process Provider Name Task Name Opcode Name Count s,,: Threadld Field 1 g Field 2 g Field 3 sig Field 4 g Field 5 g Field 6 sy Field 7 v Time (s) Legend
1 osvr_server.exe (964556) Multi-Main b Block 21,172 0 0.999811071... 0.028323994... 0 0 0 0 .
2 b osvr_palace.exe (770440) 5,190 179.706358381503 0 0.019815667... 0 0 0 0 -
3 b UlforETW.exe (964624) 490 0.897606530612245 766.5727361... 20.49110714... 0 0 0 0 -

Focusing in: App startup

Select an area of interest, and “Zoom all” - usually
in new view. Hold shift to snap selection ends to
marks. Here, we're looking at app startup.

e

XXXXXXXXXXY XX Zoom Ctrl=,

- Ie

Undo Zoom Ctrl+Z
Redo Zoom Ctrl+Y

34 35 36

wider Name Task Name Op | Zoom all infpew view Ctrl+Shift+, |

Zoom grapk\?n new view

el T

Duplicate graph

Unzoom Ctrl+Shift+-
Select Time Range...

Highlight Selection Ctrl+M

Clear Highlight Ctrl+Shift+M
Show Peaks for Time Range

The app process is here:
note the triangle is

1
a

N 2015-08-20_11-30-46_PalaceDemo.etl - Windows Performance Analyzer

n n
expanded 2
BN Graph Bxplorer - 2015-08-20 TNE & X | G ting Started Bl Analysis Bl Analysis (2) = g
b System Activity g
Ul Delays Delays By Process, Typ =
* * * %
3 . 4 &
¥ * > & ;’?
¥ * 4 g
b Computation Iy s ES
P . We created a
vy Yy \l Information . Q
| | [new selection
b Storage 0
’ — snapped at either
3650 Selectiol
W/ A opeodetome Jcomt® o Thea] bumion 0105550625 end to those two
b Ve 6 Start Time 36.573216436s &
Y b Begin 320 EndTime 36.682767064s event markers.
b End 320
PV 4 0 0 The selection
5 UlforETW.exe (964624) b JAulti-Main 15 0.19552 78263156
b Power 6 = osvr_palace.exe (770440) 13 71744.3076923077 0 1
7 /Multi-Main n 84788.7272727273 O t00|tlp ShOWS the
8 b Block 10 0 0 d 4
9 ThreadID Information 1 9_32 676 93&?6 0 36.476230064 u ratl o n .
10 Multi-Worker BlockWor... ¥ Mark 0 0
1n 1 932,676 GetState/me/head 36.573216436
12 1 932,676 GetState/me/head 36.682767064
art: 36.270225981s T] \ \ 1 1 \ prrrereeere \ 1 1 T T
: 36.989561831s 3630 3635 3640 3645 36.50 3655 - =l 3670 3675 36.80 36.85 3690 3695

These two sections correspond and show the first two “GetState” calls by the app.

Here, by expanding the providers in the top pane and zooming in, we find that the
first two calls to OSVR “get state” for the head are 0.1s apart, so presumably OSVR
is starting up early in the app launch process while the app is still loading. If you
wanted to know what your app (or others!) was doing during that time, you could
“zoom" again and use the other panes of WPA to investigate your code.

4 Generic Events Randomascii Chrome and Multi Events * v 0 'ﬁ'

Series
osvr_palace.exe (770440) $ [] B0 0000 000000 00 000000 0000000000000 00 000000000000 0400001
Multi-Main $ * BP0 0000 00000000 00 0000000000000 000000 000000000000 040000¢
Block $ * B00000 0000 00000000 0000000000000 00000000 000000000000 0400001
Begin + * G0N 00 00 00000000 00 0000000000000 00000000000 0000000000000
| | | | | |
366 368 370 372 374 376 378 380 382 384 386 388 390 392 394
Line# Process Provider Name Task Name Opcode Name Count 5‘”: Threadld Description (Fiel... , Depth (Fiel... _ Field 3 g Field 4 g Field 5 g Field 6 g Field 7 i

1 osvr_palace.exe (770440) Multi-Main Block Begin 466 0 0 0 0 0] 0

2 1 932,676 ClientUpdate 0
3 1 932,676 ClientUpdate 0
4 1 932,676 ClientUpdate 0
5 1 932,676 ClientUpdate 0
6 1 932,676 ClientUpdate 0
7 1 932,676 ClientUpdate 0
8 1 932,676 ClientUpdate 0
9 1 932,676 ClientUpdate 0
10 1 932,676 ClientUpdate 0
1 1 932,676 ClientUpdate 0
12 1 932,676 ClientUpdate 0
13 1 932,676 ClientUpdate 0
14 1 932,676 ClientUpdate 0
15 1 932,676 ClientUpdate 0
16 1 932,676 ClientUpdate 0
17 1 932,676 ClientUpdate 0
18 1 932,676 ClientUpdate 0
19 1 932,676 ClientUpdate 0
20 1 932,676 ClientUpdate 0
21 1 932,676 ClientUpdate 0

We can zoom out in a number of ways: Ctrl-scroll, context (right-click) menu, etc.
Right clicking on events lets you filter them. Here, we've zoomed out, filtered to just
the “ClientUpdate” events, and selected some “steady-state” running after startup

finishes, to zoom in again.

All tables shown in WPA
show only information
corresponding to the
current “zoomed
region”. Here, you can
see in the summary row
that 265 ClientUpdates
took place in this view (it
looks like fewer since
many were very close
together)

This area shows
information about the
current zoomed
region. The duration
we're viewing is
1.72777 seconds.

L -

Sl Mutti-Main
~ Block

3 || = osvr_palace.exe (770440)

| | | | | | | | | | |
378 379 380 381 352 353 384 385 386 387
in

2015-08-20_11-30-46_PalaceDemo.etl - Windows Performance Analyzer

ents Randomascii Chrome and Multi Events * v

Bl Analysis)
L

Boo=ox

1
u]

a

A KKK K N X)

jueysissy sisjeuy | |speyaq| €2

T 00 00 00 000 4 P PP P PP RPRPRIIIEOT FPIFIITDS BOEOTPOEOITOEDT OV
FFI900 00 00 00 00 00 00 00 ¢ 00 20 B0 0000ttt trrt o0 s0 s 0000000 o}
FH0000 00 00 00 00 00 00 00 0000 0000ttt 00000ttt e Y
PEEEEE 44 00 44 00 00 00 9200000000000 00590050959990000990909090%9%9%90

|
ELH

|
389

390

391

|
392

|
93

%

Line# Process Provider Name TaskName OpcodeName Count . Threadid Description)Fiel.., Depth (Fiel.. Field3 , Fieldd . Time(s) Legend
[1 osvr_palace.exe (770440) Multi-Main Block ~ Begin 265 0 T 0 0 0
- 0 37.656351665
3 1 932676 ClientUpdate 0 37657058651
4 1 932676 ClientUpdate 0 37657214116
5 1 932,676 ClientUpdat 0 37.657378335
[T e Cietpome 0] resrmm
7 1 932,676 tUpdat 0 37688342055
8 1 932676 ClientUpdat 0 37689238316
9 1 932676 ClientUpdat: 0 37689421855
10 1 932676 ClientUpdat 0 37680571584
11 1 932676 ClientUpdat 0 37.689584867
12 1 932676 ClientUpdat 0 37714948843
13 1 932676 ClientUpdat 0 37715642245
14 1 932676 ClientUpd: 0 37.715792276
Start: 37.6362751595 T T T T T T T T T T T T T T
End: 39.3640484035 377 378 379 380 381 382 383 384 385 386 38 388 389 390 391 392 393
Duration: 1.727773244s
Diagnostic Consol

All the ClientUpdate
events in the period are
in this table along with
their timestamp relative
to the beginning of the
trace. (These tables can
be exported to
spreadsheets if you
want to do more in-
depth number crunching
than the WPA GUI
provides)

Here, we've zoomed in to a “steady state” portion of the trace recording, and also
filtered the custom events so that only the “Begin” marks of a ClientKit update are
shown. Some basic analysis reveals the app was making just over 150 calls to
ClientUpdate per second on average: slower than the tracker update rate, but higher

than the framerate.

RemO\“ng the fllter: |n that Same 4 Generic Events Randomascii Chrome and Multi Events* v 0 a‘

Series

1.7s time period, the server = osurserver exe (964556)
¥ Multi-Main

L
update ran 892 times, and the v Bock =
application got the state of SS—_

g
L
L

/me/head 53 times. (The fact that =~ 7 epeceecrm

¥ Multi-Main

53 < 265 (update calls) means the - e«

Begin

* ¢ ¢ ¢
* & o ¢
* o o ¢
* o o ¢
* o o o
* ¢ ¢ ¢
* o ¢ ¢
* o o o
* & ¢ ¢
* o) o ¢
* | o o
* ¢ ¢ ¢
* | o o
* o o 9
* o o o
a al al al

app doesn't care about head pose

3775 37.80 37.85 37.90 37.95 3800 3805 3810 3815 3820

as often as itis updating OSVR. Line# Process ProviderNae TaskName OpcodeName Count o, Threadld Field 1 o F

\ 1 osvr_server.exe (964556) Multi-Main w Block 1,784 0 1

Since this is a Unity app making I s s i 0

3 b End 892 0 1

those accesses from managed (. 4 = osv_palace.exe (T70440) 5 0 0

NET) code, that means it was - s RO - . :

R 7 b End 265 0 0

prObabl\/ a gOOd Ch0|ce to use the 8 Multi-Worker BlockWor... ¥ Mark 53 0 0
9 932676 GetState/me/head

state interface here, since the 2
alternative would have been >265 i
native-to-managed callbacks.) 13

932,676 GetState/me/head
932,676 GetState/me/head
932,676 GetState/me/head
932,676 GetState/me/head
922 A76 __ GetState/me/head

~

Comparing multiple events, within and between processes

The highlighted

graph |ine here iS 3765 3770 3775 3780 3785 3790 3795 3800 3805 3810 3815 3820 3825 3330 3835 3840 3845
Line# Process Provider Name Task Name Opcode Name Count sq: Threadld Description (Fiel... , Field 2 g Field 3 svg Field 4 g |
the app CPU Usage' 1 osvr_server.exe (964556) Multi-Main w Block 1,784 0 1 0.025935529... 0 0
which shows a fairly 2 b Begin B2 0 1 0 0 0
. 3 b End {892 0 1 0.051871059... 0 0
regular spike to

aPPI’OXimater one S WindowinFocus ~ pfa
i . b GPU Utilization (FM) ~
logical CPU on this E

4 CPU Usage (Precise) Randomascii Wait Analysis*v] 0 &

maCh I n e. Series % CPU Usage using resource time as [Switch-In Time Switch-Ir
b Idle (0) —
P svchost.exe (1132) |]
10 I ‘ Y ‘
b osvr_palace.exe (770440) [N)
b procexpbd.exe (741604) [| .| New Process osvr_palace. exe (770440) A) ‘ ; |
b chrome.exe (571336) = OEI‘ L J - T Time 37.916094476s |jih e R
b ch e (321226 = 3765 3770 3775| 3780 3785 (370160044 % CPU U 3825 3830 3835 3840 3845
sage 11.278796911
4 CPU Usage (Sampled) Randomascii Inclusive (stack) v 0 £ . __i . - .
Line# Process Thread ID Stack rep::ﬁ;a:[:_a;;é:z .:‘C\’c;:fe‘:@ Count SJ,: Weight (in vie... ¢
1 svchost.exe (1132) 13 2,620 8,163 964728623
2 b osvr_palace.exe (770440) 1,661 198.960673
3 b procexp64.exe (741604) 1,580 187.544040
4 P chrome.exe (571336) 1,541 181.879813

Same time region, different panes of ETW functionality - correlated with events

Links and References

UlforETW release v1.13 and WPT 10 were used for these screenshots. More info:

Intro blog post (Bruce Dawson): https://randomascii.wordpress.com/2015/04/14/uiforetw-
windows-performance-made-easier/

GitHub repo (click Releases for downloads): https://github.com/google/UlforETW

Be sure to “Copy startup profiles” and “Copy symbol DLLs" from the Settings dialog when you first
launch UIforETW or after updating it.

UlforETW was initially written by Bruce Dawson, formerly of Microsoft and Valve, currently at Google
working on Chrome performance (hence why there are some extra features in UIforETW that are
Chrome-specific - it originated as an internal tool)

o He's posted a lot on his blog (see above) about ETW/xperf in the past few years (filter posts by
the "xperf” tag), much of it is still applicable and very useful reading (although UlforETW takes
away much of the pain described in the earliest posts)

o Hisrolein the creation of UIforETW is also why “Randomascii” (one of his handles - see blog
URL) appeared in these screenshots: he provides useful custom views for WPA in the “startup
profiles” mentioned above.

GPUView (linked from UlforETW when GPU tracing enabled) intro page: http://graphics.stanford.
edu/~mdfisher/GPUView.html

https://randomascii.wordpress.com/2015/04/14/uiforetw-windows-performance-made-easier/
https://randomascii.wordpress.com/2015/04/14/uiforetw-windows-performance-made-easier/
https://randomascii.wordpress.com/2015/04/14/uiforetw-windows-performance-made-easier/
https://github.com/google/UIforETW
https://randomascii.wordpress.com/category/xperf/
http://graphics.stanford.edu/~mdfisher/GPUView.html
http://graphics.stanford.edu/~mdfisher/GPUView.html
http://graphics.stanford.edu/~mdfisher/GPUView.html

To avoid increasing dependencies and potential performance impacts, tracing is disabled by default

in the provided binaries as of September 2015. However, corresponding tracing-enabled DLLs are

now shipped in the “tracing” folder in binary snapshots.

You can directly replace the DLLs with ones built with tracing turned on to add tracing as needed.

See the readme in that folder for details.

If you build from source, I'd suggest turning on tracing (as | do) - never know when you might need

it.

For additional information:

e OSVR developer portal
o http://osvr.github.io

e Sensics — Founding contributor to OSVR,

experts working in VR/AR for over a decade
o http://www.sensics.com

SEeNSICS

http://osvr.github.io
http://osvr.github.io
http://www.sensics.com
http://www.sensics.com

