
Intro to ETW tracing and
OSVR

Ryan A. Pavlik, Ph.D.
Senior Software Engineer, Sensics, Inc.

August-September 2015

“Event Tracing for Windows (ETW) is an efficient kernel-level tracing
facility that lets you log kernel or application-defined events to a log file.
You can consume the events in real time or from a log file and use them
to debug an application or to determine where performance issues are
occurring in the application.
ETW lets you enable or disable event tracing dynamically, allowing you to
perform detailed tracing in a production environment without requiring
computer or application restarts.”

Source: MSDN, “Windows Events: About Event Tracing”

What is Event Tracing for Windows?
aka ETW, xperf, Windows Performance Toolkit (WPT), Windows Performance Analyzer (WPA), …

What about the rest of those? xperf is the command-line tool to control ETW, so often used synonymously with ETW. Windows Performance Toolkit is the name given by MS to the installable package that provides user-level tools for ETW. WPT

includes Windows Performance Analyzer, the GUI we’ll use to display and explore tracing data, as well as other tools like WPRUI (Win. Perf. Recorder UI, a limited GUI for controlling tracing that we won’t use).

https://msdn.microsoft.com/en-us/library/windows/desktop/aa363668(v=vs.85).aspx

What is Event Tracing for Windows
really?
● Effectively, a collection of tools and technologies to get very in-depth performance

details across an entire running environment at minimal performance impact.

● With UIforETW, an open-source tool that (among other things) automates the

complex command lines to start, stop, and manage traces, it can be a great

investigative tool (including high rate sampling and wait-analysis profiling) on its

own: I’ve used it like this for some time now.

● OSVR on Windows now augments ETW traces made by UIforETW with custom

events on both the client and server side.

● The following screenshots barely scratch the surface of what you can do with ETW,

especially now with OSVR emitting custom events.

Settings I used for this trace: I chose to turn on fast sampling, but not GPU tracing,
and traced to an in-memory circular buffer that gets saved on a keystroke. This can
let you leave tracing running continuously, then after you notice unusual behavior or
something you’d like to investigate, you can hit the shortcut key and save a trace of

the last x seconds, for after-the-fact performance investigation.

● Double-clicked on trace name in UIforETW. Screenshot shows only the top pane shown

here: these are the “custom events” emitted by UIforETW and OSVR. Other panes show

lots more data.

● UIforETW “marks” processor speed, temp, etc. at regular intervals (is thermal throttling

affecting your performance?) and also marks keyboard and mouse movements

(customizable - was a key press or mouse click a trigger for an unusual behavior?).

Trace opened in WPA

Focusing in: App startup

Select an area of interest, and “Zoom all” - usually
in new view. Hold shift to snap selection ends to
marks. Here, we’re looking at app startup.

Here, by expanding the providers in the top pane and zooming in, we find that the
first two calls to OSVR “get state” for the head are 0.1s apart, so presumably OSVR

is starting up early in the app launch process while the app is still loading. If you
wanted to know what your app (or others!) was doing during that time, you could

“zoom” again and use the other panes of WPA to investigate your code.

These two sections correspond and show the first two “GetState” calls by the app.

The app process is here:
note the triangle is
“expanded”

We created a
new selection
snapped at either
end to those two
event markers.
The selection
tooltip shows the
duration.

We can zoom out in a number of ways: Ctrl-scroll, context (right-click) menu, etc.
Right clicking on events lets you filter them. Here, we’ve zoomed out, filtered to just
the “ClientUpdate” events, and selected some “steady-state” running after startup

finishes, to zoom in again.

Here, we’ve zoomed in to a “steady state” portion of the trace recording, and also
filtered the custom events so that only the “Begin” marks of a ClientKit update are

shown. Some basic analysis reveals the app was making just over 150 calls to
ClientUpdate per second on average: slower than the tracker update rate, but higher

than the framerate.

All the ClientUpdate
events in the period are
in this table along with
their timestamp relative
to the beginning of the
trace. (These tables can
be exported to
spreadsheets if you
want to do more in-
depth number crunching
than the WPA GUI
provides)

All tables shown in WPA
show only information
corresponding to the
current “zoomed
region”. Here, you can
see in the summary row
that 265 ClientUpdates
took place in this view (it
looks like fewer since
many were very close
together)

This area shows
information about the
current zoomed
region. The duration
we’re viewing is
1.72777 seconds.

Comparing multiple events, within and between processes

Removing the filter: in that same
1.7s time period, the server
update ran 892 times, and the
application got the state of
/me/head 53 times. (The fact that
53 < 265 (update calls) means the
app doesn’t care about head pose
as often as it is updating OSVR.
Since this is a Unity app making
those accesses from managed (.
NET) code, that means it was
probably a good choice to use the
state interface here, since the
alternative would have been >265
native-to-managed callbacks.)

Same time region, different panes of ETW functionality - correlated with events

The highlighted
graph line here is
the app CPU usage,
which shows a fairly
regular spike to
approximately one
logical CPU on this
machine.

Links and References
UIforETW release v1.13 and WPT 10 were used for these screenshots. More info:
● Intro blog post (Bruce Dawson): https://randomascii.wordpress.com/2015/04/14/uiforetw-

windows-performance-made-easier/
● GitHub repo (click Releases for downloads): https://github.com/google/UIforETW
● Be sure to “Copy startup profiles” and “Copy symbol DLLs” from the Settings dialog when you first

launch UIforETW or after updating it.
● UIforETW was initially written by Bruce Dawson, formerly of Microsoft and Valve, currently at Google

working on Chrome performance (hence why there are some extra features in UIforETW that are
Chrome-specific - it originated as an internal tool)
○ He’s posted a lot on his blog (see above) about ETW/xperf in the past few years (filter posts by

the “xperf” tag), much of it is still applicable and very useful reading (although UIforETW takes
away much of the pain described in the earliest posts)

○ His role in the creation of UIforETW is also why “Randomascii” (one of his handles - see blog
URL) appeared in these screenshots: he provides useful custom views for WPA in the “startup
profiles” mentioned above.

● GPUView (linked from UIforETW when GPU tracing enabled) intro page: http://graphics.stanford.
edu/~mdfisher/GPUView.html

https://randomascii.wordpress.com/2015/04/14/uiforetw-windows-performance-made-easier/
https://randomascii.wordpress.com/2015/04/14/uiforetw-windows-performance-made-easier/
https://randomascii.wordpress.com/2015/04/14/uiforetw-windows-performance-made-easier/
https://github.com/google/UIforETW
https://randomascii.wordpress.com/category/xperf/
http://graphics.stanford.edu/~mdfisher/GPUView.html
http://graphics.stanford.edu/~mdfisher/GPUView.html
http://graphics.stanford.edu/~mdfisher/GPUView.html

Note

To avoid increasing dependencies and potential performance impacts, tracing is disabled by default

in the provided binaries as of September 2015. However, corresponding tracing-enabled DLLs are

now shipped in the “tracing” folder in binary snapshots.

You can directly replace the DLLs with ones built with tracing turned on to add tracing as needed.

See the readme in that folder for details.

If you build from source, I’d suggest turning on tracing (as I do) - never know when you might need

it.

For additional information:

● OSVR developer portal
○ http://osvr.github.io

● Sensics – Founding contributor to OSVR,
experts working in VR/AR for over a decade
○ http://www.sensics.com

http://osvr.github.io
http://osvr.github.io
http://www.sensics.com
http://www.sensics.com

